Preliminary

Preliminary

Preliminary

Functional Description

The device can also be configured as an 8 and 16 -bit device by grounding the unused pins in the 10 -bit and 20 -bit configurations respectively. The 8 -bit configuration may also be achieved by connecting two of the 4 -bit enables from the 4 -bit configuration together and connecting the remaining enable pin $(\overline{\mathrm{OE}}) \mathrm{HIGH}$.

Truth Tables
(see Functional Description)
20-Bit Configuration ($\mathrm{S}_{0}=\mathrm{S}_{1}=\mathrm{L}$)

Inputs				$\overline{\mathbf{O E}}_{\mathbf{5}}$	Inputs/Outputs
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{3}$	$\overline{\mathbf{O E}}_{\mathbf{4}}$	${ }^{2}$	
L	X	X	X	X	$1 \mathrm{~A}_{1-10}=1 \mathrm{~B}_{1-10}, 2 \mathrm{~A}_{1-10}=2 \mathrm{~B}_{1-10}$
H	X	X	X	X	Z

10-Bit Configuration ($\mathrm{S}_{\mathbf{0}}=\mathrm{L}, \mathrm{S}_{\mathbf{1}}=\mathrm{H}$)

Inputs					Inputs/Outputs	
$\overline{\mathbf{O E}}_{1}$	$\overline{\mathbf{O E}}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{\mathbf{3}}$	$\overline{\mathbf{O E}}_{\mathbf{4}}$	$\overline{\mathbf{O E}}_{\mathbf{5}}$	$\mathbf{1 A}_{1-10}=\mathbf{1 B}_{1-10}$	$\mathbf{2 A}_{1-10}=\mathbf{2 B}_{1-10}$
L	X	X	L	X	$1 \mathrm{~A}_{\mathrm{X}}=1 \mathrm{~B}_{\mathrm{X}}$	$2 \mathrm{~A}_{\mathrm{X}}=\mathbf{2 \mathrm { B } _ { \mathrm { X } }}$
L	X	X	H	X	$1 \mathrm{~A}_{\mathrm{X}}=1 \mathrm{~B}_{\mathrm{X}}$	Z
H	X	X	L	X	Z	$2 \mathrm{~A}_{\mathrm{X}}=2 \mathrm{~B}_{\mathrm{X}}$
H	X	X	H	X	Z	Z

5-Bit Configuration ($\mathrm{S}_{\mathbf{0}}=\mathrm{H}, \mathrm{S}_{\mathbf{1}}=\mathrm{L}$)								
Inputs					Inputs/Outputs			
$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	$\overline{\mathrm{OE}}_{3}$	$\overline{\mathrm{OE}}_{4}$	$\overline{\mathrm{OE}}_{5}$	$1 A_{1-5}, 1 B_{1-5}$	$1 A_{6-10}, 1 B_{6-10}$	$2 \mathrm{~A}_{1-5}, 2 \mathrm{~B}_{1-5}$	2A ${ }_{5-10}, 2 \mathrm{~B}_{5-10}$
L	L	L	L	X	$1 A_{x}=1 B_{x}$	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	$2 A_{x}=2 B_{x}$	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
L	L	L	H	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	$2 A_{x}=2 B_{x}$	Z
L	L	H	L	X	$1 A_{x}=1 B_{x}$	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	Z	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
L	L	H	H	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	$1 A_{y}=1 B_{y}$	Z	Z
L	H	L	L	X	$1 A_{x}=1 B_{x}$	Z	$2 A_{x}=2 B_{x}$	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
L	H	L	H	X	$1 A_{x}=1 B_{x}$	Z	$2 \mathrm{~A}_{\mathrm{x}}=2 \mathrm{~B}_{\mathrm{x}}$	Z
L	H	H	L	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	Z	Z	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
L	H	H	H	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	Z	Z	Z
H	L	L	L	X	Z	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	$2 \mathrm{~A}_{\mathrm{x}}=2 \mathrm{~B}_{\mathrm{x}}$	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
H	L	L	H	X	Z	$1 A_{y}=1 B_{y}$	$2 A_{x}=2 B_{x}$	Z
H	L	H	L	X	Z	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	Z	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
H	L	H	H	X	Z	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	Z	Z
H	H	L	L	X	Z	Z	$2 A_{x}=2 B_{x}$	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
H	H	L	H	X	Z	Z	$2 A_{x}=2 B_{x}$	Z
H	H	H	L	X	Z	Z	Z	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
H	H	H	H	X	Z	Z	Z	Z

Truth Tables (Continued)
4-Bit Configuration ($\mathrm{S}_{0}=\mathrm{S}_{1}=\mathrm{H}$)

Inputs						Inputs/Outputs				
OE_{1}	OE_{2}	OE_{3}	OE_{4}	OE_{5}	$1 \mathrm{~A}_{1-4}, 1 \mathrm{~B}_{1-4}$	$1 \mathrm{~A}_{5-8}, 1 \mathrm{~B}_{5-8}$	$2 \mathrm{~A}_{3-6}, 2 \mathrm{~B}_{3-6}$	$2 \mathrm{~A}_{7-10}, 2 \mathrm{~B}_{7-10}$	$1 \mathrm{~A}_{9-10}, 2 \mathrm{~B}_{9-10}$ $2 \mathrm{~A}_{1-2}, 2 \mathrm{~B}_{1-2}$	

Absolute Maximum Ratings(Note 3)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S}) (Note 4)	-2.0 V to +7.0 V
DC Input Control Pin Voltage ($\mathrm{V}_{\text {IN }}$) (Note 5)	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{I}_{\text {IK }}$) $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output (lout) Current	128 mA
	+/- 100 mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 6)

Power Supply Operating (V_{CC})	4.0 V to 5.5 V
Input Voltage ($\mathrm{V}_{\text {IN }}$)	0 V to 5.5 V
put Volage	0 V to 5.5 V
Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)	
Swith Control Input	$0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$
Switch I/O	$0 \mathrm{~ns} / \mathrm{V}$ to DC
Free Air Operating Temperature	C
Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical	
Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.	
Note 4: V_{S} is the voltage observed/applied at either the A or B Ports across the switch.	
Note 5: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.	
Note 6: Unused control inputs must be held float.	W. They may

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 7)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
I_{Oz}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{R}_{\text {ON }}$	Switch On Resistance(Note 8)	4.5	20	26	38	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5	20	27	40	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5	20	28	48	Ω	$\mathrm{V}_{\mathrm{IN}=2.4 \mathrm{~V}, \mathrm{l}_{\mathrm{I}}=15 \mathrm{~mA}}$
		4.0	20	30	48	Ω	$\mathrm{V}_{\mathrm{IN}=2.4 \mathrm{~V}, \mathrm{l}_{\text {IN }}=15 \mathrm{~mA}}$
ICC	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{l}_{\text {OUT }}=0$
$\triangle \mathrm{I}_{\text {CC }}$	Increase in I ${ }_{\text {cc }}$ per Input	5.5			2.5	mA	One Input at 3.4 V Other Inputs at V_{CC} or GND
$\overline{\mathrm{V}_{\text {IKU }}}$	Voltage Undershoot	5.5			-2.0	V	$\begin{aligned} & 0.0 \mathrm{~mA} \geq \mathrm{I}_{\mathrm{IN}} \geq-50 \mathrm{~mA} \\ & \overline{\mathrm{OE}}_{\mathrm{x}}=5.5 \mathrm{~V} \end{aligned}$
Note 7: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Note 8: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.							

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure Number
		$\mathrm{V}_{\text {cc }}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\text {cc }}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\overline{t_{\text {PHL }}, t_{\text {PLH }}}$	Propagation Delay Bus-to-Bus (Note 9)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	$\begin{gathered} \text { Figures } \\ 2,3 \end{gathered}$
$\overline{t_{\text {PZH }}, t_{\text {PZL }}}$	Output Enable Time	1.5	5.5		6.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figures 2,3
$\overline{t_{\text {PHZ }}}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	5.5		6.0	ns	$\begin{aligned} & V_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	$\begin{gathered} \text { Figures } \\ 2,3 \end{gathered}$
$\overline{t_{\text {PZH }}, t_{\text {PZL }}}$	Sel ($\mathrm{S}_{0,1}$) to Output Enable Time	1.5	6.0		6.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	$\begin{gathered} \hline \text { Figures } \\ 2,3 \end{gathered}$
$\overline{t_{\text {PHZ }}, t_{\text {PLZ }}}$	Sel ($\mathrm{S}_{0,1}$) to Output Disable Time	1.5	6.0		6.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figures 2,3

Capacitance (Note 10)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V}$
$\mathrm{C}_{/ \mathrm{O}}$	Input/Output Capacitance "OFF State"	6		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V}$

Note 10: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

Device Test Conditions

Parameter	Value	Units
$\mathrm{V}_{\text {IN }}$	see Waveform	V
$\mathrm{R}_{1}=\mathrm{R}_{2}$	100 K	Ω
$\mathrm{~V}_{\text {TRI }}$	11.0	V
$\mathrm{~V}_{\mathrm{CC}}$	5.5	V

Transient
Input Voltage ($\mathrm{V}_{\text {IN }}$) Waveform

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance Note: Input Frequency $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

FIGURE 3. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC MO-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD
54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
Package Number BGA54A
Preliminary
FSTU162450 Configurable 4-Bit to 20 -Bit Bus Switch with $\mathbf{- 2 V}$ Undershoot Protection and 25Ω Series Resistors in Outputs (Preliminary)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1 mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
